<u>Section II</u> (Separation Theorems)

Part II of this text is concerned w/ duality correspondences, Rockafellar states that separation theorems are the foundations for duality correspondences. Almost everything that follows in this chapter is based on the fact that a hyperplane in R^h divides R^h "evenly in two." Definition

- A hyperplane H is said to separate C, if C_2 if Gis contained in one of the closed half-spaces assoc. W/H and C_2 lies in the opposite closed half-space
- It separates C, & C2 properly if C, & C2 are not both contained in H itself.
- It separates C, & C2 strongly if I E=0 s.t. C1+EB is contained in one of the assoc. open half-spaces & C2+EB is contained in the apposite open half space.
- Other Kinds of separation are considered in general, e.g. <u>strict</u> separation (C, 4 C2 must simply belong to opposing open h.s.), however proper 4 strong separation are most useful for our purposes. <u>Ha</u> <u>Separates</u> <u>C</u> <u>Ha</u> <u>Ha</u> <u>Separates</u> <u>C</u> <u>Ha</u> <u>Ha</u> <u>Separates</u> <u>C</u> <u>Separates</u> <u>Separate</u>

Theorem 11.1

Let C, C2ER be non-empty sets. I a hyperplane separating C, & C2 properly iff 7 a vector 6 s.t. (i) (a) inf $\{\langle x,b \rangle | x \in C, \} \ge \sup \{\langle x,b \rangle | x \in C_2\}$ (b) sup $\{\langle x, b \rangle | x \in C, \}$ inf $\{\langle x, b \rangle | x \in C\}$. Additionally, 3 a hyperplane separating (, 5 Cz _strangly iff 7 a vector b s.t. (ii) (c) inf $\{\langle x,b \rangle | x \in C_1\} > \sup \{\langle x,b \rangle | x \in C_2\}$. Prouf (i) (\in) Suppose \exists b satisfying (a) \pounds (b) \pounds let β be s.t. xec, (x1b) ≥ β ≥ xec, (x1b). b=0 & BER > H= {-x | <x, b7=B} is a hyperplane (Thm 1.3). Then $C, C \{ x | \langle x_1 b \rangle \ge \beta \}$ is $C_2 C \{ x | \langle x_1 b \rangle \le \beta \}$. Condition (b) implies C, & G are not both contained in H, i.e., H separates C, & Ca properly. V (=>) Assume C1 & C2 can be separated properly, then Hnere exists $b \notin \beta$ s.t. $H = \{x | \langle x, b \rangle = \beta \}$ $x \in (1 \Rightarrow (x, b) \ge \beta \leq x \in (1 \Rightarrow (x, b) \le \beta)$ one these inequalities strict for at least one one of xel, or xell, therefore to sortifies (a) & (b). □ (ii)(⇐) (F b satisfies (c) we can choose Bet & $\delta > 0$ s.t. $\langle x_1 b \rangle \ge \beta + \delta \quad \forall x \in C_1 \quad \leq \quad \langle x_1 b \rangle \le \beta - \delta \quad \forall x \in C_2.$ Then 3 Ero such that (4,57)<5 4 ye EB. Let XE C. & YEEB then ~ · ·

 $\langle x+y, b \rangle = \langle x, b \rangle + \langle y, b \rangle > \beta + \delta - \delta - \beta \implies C_1 + \ell \beta c \{x | \langle x, b \rangle > \beta \}.$ Similarly, we have $C_2 + \ell \beta c \{x | \langle x, b \rangle < \beta \}.$ Therefore, $H = \{x | \langle x, b \rangle = \beta \}$ separates $C_1 \notin C_2$ strongly. \mathcal{N} (=>) Assume $C_1 \& C_2$ can be separated strongly then $\exists b \& \beta > .+$ $\inf_{x \in C_1} \langle x, b \rangle > \inf_{x \in C_2} \langle x, b \rangle + \ell \langle y, b \rangle > \sup_{x \in C_2} \langle x, b \rangle. \square$

Now we turn to the existence guestion which is: given two sets can we find a separating hyperplane? <u>Theorem 11.2</u>

Let $Celle^{h}$ be a non-empty relatively open CVX set, and let $Melle^{h}$ be a non-empty affine set not meeting C, i.e., $MAC=\phi$. Then \exists a hyperplane H containing M, s.t. one of the open half-spaces assoc. W/H contains C. **Prouf**

IF M is a hyperplane (i.e., M is n-1 dimensional) then we are done, M separates C otherwise $M \cap C \neq \phi$. Therefore, WLOG assume M is not a hyperplane. Set yp

WLOG assume $O \in M$, so that M is a subspace. $O \notin C$ then $C \subset (C-M)$ but $O \notin C-M (M \cap (= \phi))$. M is not a hyperplane \Rightarrow the subspace M^{\perp} contains a twodimensional subspace P. Define $C' = P \cap (C-M)$, C' is a relatively open Cvx set in $P(Cor \ 6.5.1: ri(P \cap (c-M)) = P \cap ri(C-M))$ 4 Cor $6.6.2: ri(C-M) = ri(C) - ri(M) = C-M) \notin O \notin C$. Now we want to find a line L through O in P not meeting C' then M' = M + L is O = M dimension higher than $M \notin M \cap C = \phi$ (if $(M + L) \cap C \neq \phi$ then $L \cap (C-M) \neq \phi$, which contradicts $L \cap C' = \phi$ by Cons + roution). WLOG identify $P = W/R^2$.

Luses

(i) C'is empty or zero dimensional then finding L is trivial.
(ii) affC' is a line not containing O, take L to be the parallel line through O.
(iii) affC' is a line containing O, take L to be

the perpendicular line through O.

(iv) C' is two-dimensional and hence open, then K=No AC' is the smallest convex cone containing C' (Con 2.6.3). Note that K is open and does not contain O. Therefore K is an <u>open</u> sector of IR² corresponding to an angle no greater than T. Take L to be the line extending one of the two boundary rays of the sector. □

Theorem 113 (Main Separation Theorem)

let C, Cz EIRⁿ be non-empty cvx sets. In order that there exists a hyperplane separating C, G Cz properly, it is necessary and sufficient that ri C, G ri Cz have no point in common. <u>Prouf</u>

Consider the cvx set $C=C_1-C_{2,1}$ then $riC=riC_1-riC_2$ (Thm 6.6.2) so $O \notin riC$ iff $riC_1 AriC_2=\phi$. Since $O \notin riC$ Thm 11.2 guarantees the existence of a hyperplane containing $M=\{O\}$ s.t. riC is Contained in one of the assoc. h.s., Now C c cl(riC) implies C is contained in the downe of the half-space. Therefore if $O \notin riC$ $\exists b$ s.t.

$$0 \leq \inf_{x \in C} \langle \chi_1 b \rangle = \inf_{x_1 \in C_1} \langle \chi_{1,1} b \rangle - \sup_{x_2 \in C_2} \langle \chi_{2,1} b \rangle$$
$$0 \leq \sup_{x \in C} \langle \chi_1 b \rangle = \sup_{x_1 \in C_1} \langle \chi_{1,1} b \rangle - \inf_{x_2 \in C_2} \langle \chi_{2,1} b \rangle$$

Now Then II.1 implies C, & Cs can be separated properly. Conditions in II.1 imply O∉ri(C) since they assert the existence of a h.s. D={x|<x,b>z} containing C where riD ∧ C+O ⇒ ricc riD (cor 6.5.2).□ Example Why does II.5 only give proper separation?

Consider

$$C_{1} = \{(5_{1}, 5_{2}) | 5_{1} > 0_{1} | 5_{2} > 5^{-1} \}, \{ C_{2} = \{(5_{1}, 0) | 5_{1} > 0 \}.$$

Then $C_1 \cap C_2 = \phi$ but the only separating hyperplane is the B_1 -axis which contains all of C_2 . That is, $C_1 \in C_2$ are properly separated but NOT strongly separated.

Theorem 11.4

Let C_1 , $C_2 \in \mathbb{R}$ be non-empty cvx sets. In order that there exists a hyperplane separating $C_1 \notin C_2$ strongly, it is necessary \notin sufficient that $\inf \{|x_1, x_2|| \times \epsilon(1, x_2 \in C_2^3 > O_1$

or in other words that $O \notin cl(c_1-c_2)$. **Prouf**

By defin of strong separation $\exists \in 70$ s.t. $(C_1 \in EB) \cap (C_2 + \in B) = \phi$. Considering $(C_1 + \in B) \cap (C_1 + \in B) = \phi$ Thm 11.3 implies $C_1 + \in B$ & $C_1 + \in B$ can be separated properly, i.e., $C_1 + \leq B + \leq B$ & $C_2 + \leq B + \leq B$ belong to opposite (closed) h.s. so that $C_1 + \leq B$ & $C_2 + \leq B$ belong to opposite open h.s.. That is $C_1 \notin C_2$ can be separated strongly iff for some $\in 70$ the origin is NUT contained in

 $(C_{1} + E_{B}) - (C_{2} + E_{B}) = C_{1} - C_{2} - 2E_{B}$

i.e. $2EB(C_1-C_2 = \phi)$ for some E_{70} which says $0 \notin cl(C_1-C_2)$. \Box

Skipping Corollary 11.4.1 5/c it depends on recession. Corollary 11.4.2

Let Ci, Ci Eller be non-empty cvx sets whose closures are disjoint. If either set is bounded I a hyperplane separating Ci & Ci strongly. **Proof**

see book, depends on recession & Corollary 11.4.1.

Theorem 11.5 (updated in 18.8)

A closed cvx set c is the intersection of the closed half-spaces which contain it. **Prouf**

Assume $\emptyset \neq C \neq \Pi R^h$ (otherwise it is trivial). Consider $a \notin C_1$ then $G = \{a\} \notin G_2 = C$ satisfy II.4 implying \exists hyporplane H separating $\{a\} \notin C$ strongly. One cf the closed h.s. assoc. w/H contains C bat not $\{a\}_1$ therefore the intersection OF all closed half spaces containing C contains no points other than those in $C.\Box$

Corollary 11.5.1

Let S be any subsct of R^h. The cl(convS) is the intersection of all the closed half spaces Containing S. <u>Corollary 11.5.2</u>

Let C be a cvx subset of \mathbb{R}^n other than \mathbb{R}^n itself. Then \exists a closed hulf-space containing C, i.e., there exists some be \mathbb{R}^n s.t. the linear fot $\langle \cdot, b \rangle$ is bounded above on C.

Definition

- ·A supporting half-space to a cvx set CER^M is a closed h.s. containing C & has a point of C in it's boundary
- A <u>supporting hyperplane</u> to a cvx set C is a hyperplane which is the boundary of supporting h.s. to C.

supporting hyperplanes are $H = \{x \mid x_1 \} > \beta\}$, $b \neq 0$, $w \mid x_1, b \geq \beta \neq x \in C$ for $f \neq$

Theorem 11.6

Let C be a convex set, & let D be a nonempty cvx subset of C (e.g. a single point). In order that there exists a non-trivial supporting hyperplane to C containing D, it is necessary and sufficient that D be disjoint from riC.

Proof

DCC ⇒ the non-trivial supporting hyperplanes (H) to C S.t. DCH are hyperplanes separating C & D properly. Such H exist iff ricAriD = Ø (Then 11.5). Assume DAriC≠S then Cor 6.5.2 implies that riDCriC which is a contradiction. Therefore we have riDAriC=Ø is equivalent to DAriC=Ø. □ Corollary 11.6.1

A cvx set has a non-zero nomal at each of it's bdry pts. Corollary 11.6.2

Let C be a cvx set. XEC is a relative bdry pt iff there exists a linear fat h not constant on C s.t. h achieves it's maximum over C at X.